
Week 6 - Wednesday

 What did we talk about last time?
 Finished Exam 1 post mortem
 Data compression example
 Mergesort

 On the planet Og, there are green people and red people
 Likewise, there are northerners and southerners
 Green northerners tell the truth
 Red northerners lie
 Green southerners lie
 Red southerners tell the truth
 Consider the following statements by two natives named Ork and Bork:
 Ork: Bork is from the north
 Bork: Ork is from the south
 Ork: Bork is red
 Bork: Ork is green

 What are the colors and origins of Ork and Bork?

 If we can, we want to turn the recursive version of T(n) into an
explicit (non-recursive) Big Oh bound

 Before we do, note that we could similarly have written:

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)
 Also, we can't guarantee that n is even
 A more accurate statement would be

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛
 Usually, we ignore that issue and assume that n is a power of 2, evenly

divisible forever

 Each time, the recursion cuts
the work in half while doubling
the number of problems
 The total work at each level is

thus always cn
 To go from n to 2, we have to

cut the size in half (log2 n) – 1
times

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn

cn

cn

 We know that there's cn work at each level and approximately log2
n levels

 If we think that the running time O(n log n), we can guess that T(n)
≤ cn log2 n and substitute that in for T(n/2)

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛

≤ 2𝑐𝑐
𝑛𝑛
2

log2
𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛
= 𝑐𝑐𝑛𝑛 (log2 𝑛𝑛 − 1) + 𝑐𝑐𝑛𝑛
= 𝑐𝑐𝑛𝑛 log2 𝑛𝑛 − 𝑐𝑐𝑛𝑛 + 𝑐𝑐𝑛𝑛

= 𝑐𝑐𝑛𝑛 log2 𝑛𝑛

 Divide and conquer algorithms are ones in which we divide a
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute

because recursion is involved

 Defining a sequence recursively as with Mergesort is called a
recurrence relation

 The initial conditions give the starting point
 Example:
 Initial conditions
▪ T(0) = 1
▪ T(1) = 2

 Recurrence relation
▪ T(k) = T(k-1) + kT(k-2) + 1, for all integers k ≥ 2

 Find T(2), T(3), and T(4)

 Consider the following recurrence relation:
 T(k) = 3T(k-1) – 1, for all integers k ≥ 1

 Now consider this one:
 T(k+1) = 3T(k) – 1, for all integers k ≥ 0

 Both recurrence relations have the same meaning

 Even if the recurrence relations are equivalent, different initial
conditions can cause a different sequence

 Example:
 T(k) = 3T(k-1), for all integers k ≥ 2
 T(1) = 2
 S(k) = 3S(k-1), for all integers k ≥ 2
 S(1) = 1
 Find T(1) , T(2) , and T(3)
 Find S(1) , S(2) , and S(3)

 Interest is compounded based on some period of time
 We can define the value recursively
 Let i is the annual percentage rate (APR) of interest
 Let m be the number of times per year the interest is

compounded
 Thus, the total value of the investment at the kth period is
 P(k) = P(k-1) + P(k-1)(i/m), k ≥ 1
 P(0) = initial principle

 … is confusing
 We don't naturally think recursively (but perhaps you can raise

your children to think that way?)
 With an interest rate of i, a principle of P(0) , and m periods

per year, the investment will yield P(0)(i/m + 1)k after k periods

 We want to be able to turn recurrence relations into explicit
formulas whenever possible

 Often, the simplest way is to find these formulas by iteration
 The technique of iteration relies on writing out many

expansions of the recursive sequence and looking for patterns
 That's it

 Find a pattern for the following recurrence relation:
 T(k) = T(k-1) + 2
 T(0) = 1

 Start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge

 In principle, we should use mathematical induction to prove
that the explicit formula we guess actually holds

 The previous example (odd integers) shows a simple example
of an arithmetic sequence

 These are recurrences of the form:
 T(k) = T(k-1) + d, for integers k ≥ 1

 Note that these recurrences are always equivalent to
 T(n) = T(0) + dn, for all integers n ≥ 0

 Find a pattern for the following recurrence relation:
 T(k) = rT(k-1), k ≥ 1
 T(0) = a

 Again, start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge

 It appears that any geometric sequence with the following
form
 T(k) = rT(k-1), k ≥ 1

 is equivalent to
 T(n) = T(0)rn, for all integers n ≥ 0

 This result applies directly to compound interest calculation

 Intelligent pattern matching gets you a long way
 However, it is sometimes necessary to substitute in some

known formula to simplify a series of terms
 Recall
 Geometric series: 1 + r + r2 + … + rn = (rn+1 – 1)/(r – 1)
 Arithmetic series: 1 + 2 + 3 + … + n = n(n + 1)/2

 In a complete graph, every node is connected to every other node
 If we want to make a complete graph with k nodes, we can take a

complete graph with k – 1 nodes, add a new node, and add k – 1
edges (so that all the old nodes are connected to the new node)

 Recursively, this means that the number of edges in a complete
graph is
 S(k) = S(k-1) + (k – 1), k ≥ 2
 S(1) = 0 (no edges in a graph with a single node)

 Use iteration to solve this recurrence relation

 We can model the running time for binary search as a
recurrence relation
 T(n) = T(n/2) + c, k ≥ 2
 T(1) = c

 Use iteration to solve this recurrence relation
 Instead of plugging in values 1, 2, 3,… , try powers of two: 1, 2,

4, 8,…

 We have seen that recurrence relations of the form 𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛 where q is bigger than 2
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at

each level

cn

(3/2)cn

(9/4)cn

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn/2

cn/4cn/4cn/4 cn/4 cn/4

 For q = 3, it's 𝑇𝑇 𝑛𝑛 ≤ ∑𝑗𝑗=0
log2 𝑛𝑛−1 3

2

𝑗𝑗
𝑐𝑐𝑛𝑛

 In general, it's

𝑇𝑇 𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗
𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛 �

𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗

 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1
 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛𝑟𝑟log2 𝑛𝑛

 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛 � 𝑛𝑛(log2 𝑞𝑞)−1 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛log2 𝑞𝑞 which is
𝑂𝑂 𝑛𝑛log2 𝑞𝑞

 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 1
2

𝑗𝑗

𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛 �
𝑗𝑗=0

log2 𝑛𝑛−1 1
2𝑗𝑗

 Summing all the way to infinity, 1 + 1
2

+ 1
4

+ ⋯ = 2
 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑛𝑛 which is 𝑂𝑂(𝑛𝑛)

 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for(int i = 1; i <= n; i *= 2)

for(int j = 1; j <= i; j++)
counter++;

 Counting inversions

 Assignment 3 is due on Friday
 Read section 5.3
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Assignment 3
	Logical warmup
	Divide and Conquer
	Recursive running time
	Intuition about mergesort recursion
	Checking a solution
	Divide and conquer
	Recursively defined sequences
	Writing recurrence relations in multiple ways
	Differences in initial conditions
	Compound interest
	Solving Recurrence Relations
	Recursion
	Finding explicit formulas by iteration
	Iteration example
	Arithmetic sequence
	Geometric sequence
	Geometric sequence
	Employing outside formulas
	How many edges are in a complete graph?
	How long does binary search take?
	Further Recurrence Relations
	Three-sentence Summary of Further Recurrence Relations
	Further recurrence relations
	Consider q = 3
	Converting to summation
	Final bound
	What about a single sub-problem?
	What might that look like in code?
	Quiz
	Upcoming
	Next time…
	Reminders

