
Week 6 - Wednesday



 What did we talk about last time?
 Finished Exam 1 post mortem
 Data compression example
 Mergesort







 On the planet Og, there are green people and red people
 Likewise, there are northerners and southerners
 Green northerners tell the truth
 Red northerners lie
 Green southerners lie
 Red southerners tell the truth
 Consider the following statements by two natives named Ork and Bork:
 Ork: Bork is from the north
 Bork: Ork is from the south
 Ork: Bork is red
 Bork: Ork is green

 What are the colors and origins of Ork and Bork? 





 If we can, we want to turn the recursive version of T(n) into an 
explicit (non-recursive) Big Oh bound

 Before we do, note that we could similarly have written:
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 Also, we can't guarantee that n is even
 A more accurate statement would be
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 Usually, we ignore that issue and assume that n is  a power of 2, evenly 

divisible forever



 Each time, the recursion cuts 
the work in half while doubling 
the number of problems
 The total work at each level is 

thus always cn
 To go from n to 2, we have to 

cut the size in half (log2 n) – 1 
times
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 We know that there's cn work at each level and approximately log2
n levels

 If we think that the running time O(n log n), we can guess that T(n) 
≤ cn log2 n and substitute that in for T(n/2)
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 Divide and conquer algorithms are ones in which we divide a 
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part 
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute 

because recursion is involved



 Defining a sequence recursively as with Mergesort is called a 
recurrence relation

 The initial conditions give the starting point
 Example:
 Initial conditions
▪ T(0) = 1
▪ T(1) = 2

 Recurrence relation
▪ T(k) = T(k-1) + kT(k-2) + 1, for all integers k ≥ 2

 Find T(2), T(3), and T(4)



 Consider the following recurrence relation:
 T(k) = 3T(k-1) – 1, for all integers k ≥ 1

 Now consider this one:
 T(k+1) = 3T(k) – 1, for all integers k ≥ 0

 Both recurrence relations have the same meaning



 Even if the recurrence relations are equivalent, different initial 
conditions can cause a different sequence

 Example:
 T(k) = 3T(k-1), for all integers k ≥ 2
 T(1) = 2
 S(k) = 3S(k-1), for all integers k ≥ 2
 S(1) = 1
 Find T(1) , T(2) , and T(3)
 Find S(1) , S(2) , and S(3)



 Interest is compounded based on some period of time
 We can define the value recursively
 Let i is the annual percentage rate (APR) of interest
 Let m be the number of times per year the interest is 

compounded
 Thus, the total value of the investment at the kth period is
 P(k) = P(k-1) + P(k-1)(i/m), k ≥ 1
 P(0) = initial principle





 … is confusing
 We don't naturally think recursively (but perhaps you can raise 

your children to think that way?)
 With an interest rate of i, a principle of P(0) , and m periods 

per year, the investment will yield P(0)(i/m + 1)k after k periods



 We want to be able to turn recurrence relations into explicit 
formulas whenever possible

 Often, the simplest way is to find these formulas by iteration
 The technique of iteration relies on writing out many 

expansions of the recursive sequence and looking for patterns
 That's it



 Find a pattern for the following recurrence relation:
 T(k) = T(k-1) + 2
 T(0) = 1

 Start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge



 In principle, we should use mathematical induction to prove 
that the explicit formula we guess actually holds

 The previous example (odd integers) shows a simple example 
of an arithmetic sequence

 These are recurrences of the form:
 T(k) = T(k-1) + d, for integers k ≥ 1

 Note that these recurrences are always equivalent to
 T(n) = T(0) + dn, for all integers n ≥ 0



 Find a pattern for the following recurrence relation:
 T(k) = rT(k-1), k ≥ 1
 T(0) = a

 Again, start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge



 It appears that any geometric sequence with the following 
form
 T(k) = rT(k-1), k ≥ 1

 is equivalent to
 T(n) = T(0)rn, for all integers n ≥ 0

 This result applies directly to compound interest calculation



 Intelligent pattern matching gets you a long way
 However, it is sometimes necessary to substitute in some 

known formula to simplify a series of terms
 Recall
 Geometric series: 1 + r + r2 + … + rn = (rn+1 – 1)/(r – 1) 
 Arithmetic series: 1 + 2 + 3 + … + n = n(n + 1)/2



 In a complete graph, every node is connected to every other node
 If we want to make a complete graph with k nodes, we can take a 

complete graph with k – 1 nodes, add a new node, and add k – 1 
edges (so that all the old nodes are connected to the new node)

 Recursively, this means that the number of edges in a complete 
graph is
 S(k) = S(k-1) + (k – 1), k ≥ 2
 S(1) = 0  (no edges in a graph with a single node)

 Use iteration to solve this recurrence relation



 We can model the running time for binary search as a 
recurrence relation
 T(n) = T(n/2) + c, k ≥ 2
 T(1) = c

 Use iteration to solve this recurrence relation
 Instead of plugging in values 1, 2, 3,… , try powers of two: 1, 2, 

4, 8,…







 We have seen that recurrence relations of the form  𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 are bounded by O(n log n)
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+ 𝑐𝑐𝑛𝑛 where q is bigger than 2 
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at 

each level
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 For q = 3, it's 𝑇𝑇 𝑛𝑛 ≤ ∑𝑗𝑗=0
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 Since r – 1 is a constant, we can pull it out
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 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
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 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time
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 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑛𝑛 which is 𝑂𝑂(𝑛𝑛)



 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for( int i = 1; i <= n; i *= 2 )

for( int j = 1; j <= i; j++ )
counter++;







 Counting inversions



 Assignment 3 is due on Friday
 Read section 5.3
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139
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