
Week 6 - Wednesday

 What did we talk about last time?
 Finished Exam 1 post mortem
 Data compression example
 Mergesort

 On the planet Og, there are green people and red people
 Likewise, there are northerners and southerners
 Green northerners tell the truth
 Red northerners lie
 Green southerners lie
 Red southerners tell the truth
 Consider the following statements by two natives named Ork and Bork:
 Ork: Bork is from the north
 Bork: Ork is from the south
 Ork: Bork is red
 Bork: Ork is green

 What are the colors and origins of Ork and Bork?

 If we can, we want to turn the recursive version of T(n) into an
explicit (non-recursive) Big Oh bound

 Before we do, note that we could similarly have written:

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)
 Also, we can't guarantee that n is even
 A more accurate statement would be

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐
 Usually, we ignore that issue and assume that n is a power of 2, evenly

divisible forever

 Each time, the recursion cuts
the work in half while doubling
the number of problems
 The total work at each level is

thus always cn
 To go from n to 2, we have to

cut the size in half (log2 n) – 1
times

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn

cn

cn

 We know that there's cn work at each level and approximately log2
n levels

 If we think that the running time O(n log n), we can guess that T(n)
≤ cn log2 n and substitute that in for T(n/2)

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐

≤ 2𝑐𝑐
𝑛𝑛
2

log2
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑛𝑛 (log2 𝑛𝑛 − 1) + 𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑐𝑐 log2 𝑛𝑛 − 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐

= 𝑐𝑐𝑐𝑐 log2 𝑛𝑛

 Divide and conquer algorithms are ones in which we divide a
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute

because recursion is involved

 Defining a sequence recursively as with Mergesort is called a
recurrence relation

 The initial conditions give the starting point
 Example:
 Initial conditions
▪ T(0) = 1
▪ T(1) = 2

 Recurrence relation
▪ T(k) = T(k-1) + kT(k-2) + 1, for all integers k ≥ 2

 Find T(2), T(3), and T(4)

 Consider the following recurrence relation:
 T(k) = 3T(k-1) – 1, for all integers k ≥ 1

 Now consider this one:
 T(k+1) = 3T(k) – 1, for all integers k ≥ 0

 Both recurrence relations have the same meaning

 Even if the recurrence relations are equivalent, different initial
conditions can cause a different sequence

 Example:
 T(k) = 3T(k-1), for all integers k ≥ 2
 T(1) = 2
 S(k) = 3S(k-1), for all integers k ≥ 2
 S(1) = 1
 Find T(1) , T(2) , and T(3)
 Find S(1) , S(2) , and S(3)

 Interest is compounded based on some period of time
 We can define the value recursively
 Let i is the annual percentage rate (APR) of interest
 Let m be the number of times per year the interest is

compounded
 Thus, the total value of the investment at the kth period is
 P(k) = P(k-1) + P(k-1)(i/m), k ≥ 1
 P(0) = initial principle

 … is confusing
 We don't naturally think recursively (but perhaps you can raise

your children to think that way?)
 With an interest rate of i, a principle of P(0) , and m periods

per year, the investment will yield P(0)(i/m + 1)k after k periods

 We want to be able to turn recurrence relations into explicit
formulas whenever possible

 Often, the simplest way is to find these formulas by iteration
 The technique of iteration relies on writing out many

expansions of the recursive sequence and looking for patterns
 That's it

 Find a pattern for the following recurrence relation:
 T(k) = T(k-1) + 2
 T(0) = 1

 Start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge

 In principle, we should use mathematical induction to prove
that the explicit formula we guess actually holds

 The previous example (odd integers) shows a simple example
of an arithmetic sequence

 These are recurrences of the form:
 T(k) = T(k-1) + d, for integers k ≥ 1

 Note that these recurrences are always equivalent to
 T(n) = T(0) + dn, for all integers n ≥ 0

 Find a pattern for the following recurrence relation:
 T(k) = rT(k-1), k ≥ 1
 T(0) = a

 Again, start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge

 It appears that any geometric sequence with the following
form
 T(k) = rT(k-1), k ≥ 1

 is equivalent to
 T(n) = T(0)rn, for all integers n ≥ 0

 This result applies directly to compound interest calculation

 Intelligent pattern matching gets you a long way
 However, it is sometimes necessary to substitute in some

known formula to simplify a series of terms
 Recall
 Geometric series: 1 + r + r2 + … + rn = (rn+1 – 1)/(r – 1)
 Arithmetic series: 1 + 2 + 3 + … + n = n(n + 1)/2

 In a complete graph, every node is connected to every other node
 If we want to make a complete graph with k nodes, we can take a

complete graph with k – 1 nodes, add a new node, and add k – 1
edges (so that all the old nodes are connected to the new node)

 Recursively, this means that the number of edges in a complete
graph is
 S(k) = S(k-1) + (k – 1), k ≥ 2
 S(1) = 0 (no edges in a graph with a single node)

 Use iteration to solve this recurrence relation

 We can model the running time for binary search as a
recurrence relation
 T(n) = T(n/2) + c, k ≥ 2
 T(1) = c

 Use iteration to solve this recurrence relation
 Instead of plugging in values 1, 2, 3,… , try powers of two: 1, 2,

4, 8,…

 We have seen that recurrence relations of the form 𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑐𝑐 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐 where q is bigger than 2
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at

each level

cn

(3/2)cn

(9/4)cn

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn/2

cn/4cn/4cn/4 cn/4 cn/4

 For q = 3, it's 𝑇𝑇 𝑛𝑛 ≤ ∑𝑗𝑗=0
log2 𝑛𝑛−1 3

2

𝑗𝑗
𝑐𝑐𝑐𝑐

 In general, it's

𝑇𝑇 𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗
𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐 �

𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗

 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1
 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛𝑟𝑟log2 𝑛𝑛

 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛 � 𝑛𝑛(log2 𝑞𝑞)−1 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛log2 𝑞𝑞 which is
𝑂𝑂 𝑛𝑛log2 𝑞𝑞

 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 1
2

𝑗𝑗

𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐 �
𝑗𝑗=0

log2 𝑛𝑛−1 1
2𝑗𝑗

 Summing all the way to infinity, 1 + 1
2

+ 1
4

+ ⋯ = 2
 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑐𝑐 which is 𝑂𝑂(𝑛𝑛)

 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for(int i = 1; i <= n; i *= 2)

for(int j = 1; j <= i; j++)
counter++;

 Counting inversions

 Assignment 3 is due on Friday
 Read section 5.3
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Assignment 3
	Logical warmup
	Divide and Conquer
	Recursive running time
	Intuition about mergesort recursion
	Checking a solution
	Divide and conquer
	Recursively defined sequences
	Writing recurrence relations in multiple ways
	Differences in initial conditions
	Compound interest
	Solving Recurrence Relations
	Recursion
	Finding explicit formulas by iteration
	Iteration example
	Arithmetic sequence
	Geometric sequence
	Geometric sequence
	Employing outside formulas
	How many edges are in a complete graph?
	How long does binary search take?
	Further Recurrence Relations
	Three-sentence Summary of Further Recurrence Relations
	Further recurrence relations
	Consider q = 3
	Converting to summation
	Final bound
	What about a single sub-problem?
	What might that look like in code?
	Quiz
	Upcoming
	Next time…
	Reminders

