
Week 6 - Wednesday



 What did we talk about last time?
 Finished Exam 1 post mortem
 Data compression example
 Mergesort







 On the planet Og, there are green people and red people
 Likewise, there are northerners and southerners
 Green northerners tell the truth
 Red northerners lie
 Green southerners lie
 Red southerners tell the truth
 Consider the following statements by two natives named Ork and Bork:
 Ork: Bork is from the north
 Bork: Ork is from the south
 Ork: Bork is red
 Bork: Ork is green

 What are the colors and origins of Ork and Bork? 





 If we can, we want to turn the recursive version of T(n) into an 
explicit (non-recursive) Big Oh bound

 Before we do, note that we could similarly have written:

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)
 Also, we can't guarantee that n is even
 A more accurate statement would be

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐
 Usually, we ignore that issue and assume that n is  a power of 2, evenly 

divisible forever



 Each time, the recursion cuts 
the work in half while doubling 
the number of problems
 The total work at each level is 

thus always cn
 To go from n to 2, we have to 

cut the size in half (log2 n) – 1 
times
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cn/2 cn/2

cn/4 cn/4cn/4 cn/4
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 We know that there's cn work at each level and approximately log2
n levels

 If we think that the running time O(n log n), we can guess that T(n) 
≤ cn log2 n and substitute that in for T(n/2)

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐

≤ 2𝑐𝑐
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2

log2
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑛𝑛 (log2 𝑛𝑛 − 1) + 𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑐𝑐 log2 𝑛𝑛 − 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐

= 𝑐𝑐𝑐𝑐 log2 𝑛𝑛



 Divide and conquer algorithms are ones in which we divide a 
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part 
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute 

because recursion is involved



 Defining a sequence recursively as with Mergesort is called a 
recurrence relation

 The initial conditions give the starting point
 Example:
 Initial conditions
▪ T(0) = 1
▪ T(1) = 2

 Recurrence relation
▪ T(k) = T(k-1) + kT(k-2) + 1, for all integers k ≥ 2

 Find T(2), T(3), and T(4)



 Consider the following recurrence relation:
 T(k) = 3T(k-1) – 1, for all integers k ≥ 1

 Now consider this one:
 T(k+1) = 3T(k) – 1, for all integers k ≥ 0

 Both recurrence relations have the same meaning



 Even if the recurrence relations are equivalent, different initial 
conditions can cause a different sequence

 Example:
 T(k) = 3T(k-1), for all integers k ≥ 2
 T(1) = 2
 S(k) = 3S(k-1), for all integers k ≥ 2
 S(1) = 1
 Find T(1) , T(2) , and T(3)
 Find S(1) , S(2) , and S(3)



 Interest is compounded based on some period of time
 We can define the value recursively
 Let i is the annual percentage rate (APR) of interest
 Let m be the number of times per year the interest is 

compounded
 Thus, the total value of the investment at the kth period is
 P(k) = P(k-1) + P(k-1)(i/m), k ≥ 1
 P(0) = initial principle





 … is confusing
 We don't naturally think recursively (but perhaps you can raise 

your children to think that way?)
 With an interest rate of i, a principle of P(0) , and m periods 

per year, the investment will yield P(0)(i/m + 1)k after k periods



 We want to be able to turn recurrence relations into explicit 
formulas whenever possible

 Often, the simplest way is to find these formulas by iteration
 The technique of iteration relies on writing out many 

expansions of the recursive sequence and looking for patterns
 That's it



 Find a pattern for the following recurrence relation:
 T(k) = T(k-1) + 2
 T(0) = 1

 Start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge



 In principle, we should use mathematical induction to prove 
that the explicit formula we guess actually holds

 The previous example (odd integers) shows a simple example 
of an arithmetic sequence

 These are recurrences of the form:
 T(k) = T(k-1) + d, for integers k ≥ 1

 Note that these recurrences are always equivalent to
 T(n) = T(0) + dn, for all integers n ≥ 0



 Find a pattern for the following recurrence relation:
 T(k) = rT(k-1), k ≥ 1
 T(0) = a

 Again, start at the first term
 Write the next below
 Do not combine like terms!
 Leave everything in expanded form until patterns emerge



 It appears that any geometric sequence with the following 
form
 T(k) = rT(k-1), k ≥ 1

 is equivalent to
 T(n) = T(0)rn, for all integers n ≥ 0

 This result applies directly to compound interest calculation



 Intelligent pattern matching gets you a long way
 However, it is sometimes necessary to substitute in some 

known formula to simplify a series of terms
 Recall
 Geometric series: 1 + r + r2 + … + rn = (rn+1 – 1)/(r – 1) 
 Arithmetic series: 1 + 2 + 3 + … + n = n(n + 1)/2



 In a complete graph, every node is connected to every other node
 If we want to make a complete graph with k nodes, we can take a 

complete graph with k – 1 nodes, add a new node, and add k – 1 
edges (so that all the old nodes are connected to the new node)

 Recursively, this means that the number of edges in a complete 
graph is
 S(k) = S(k-1) + (k – 1), k ≥ 2
 S(1) = 0  (no edges in a graph with a single node)

 Use iteration to solve this recurrence relation



 We can model the running time for binary search as a 
recurrence relation
 T(n) = T(n/2) + c, k ≥ 2
 T(1) = c

 Use iteration to solve this recurrence relation
 Instead of plugging in values 1, 2, 3,… , try powers of two: 1, 2, 

4, 8,…







 We have seen that recurrence relations of the form  𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑐𝑐 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐 where q is bigger than 2 
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at 

each level
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 For q = 3, it's 𝑇𝑇 𝑛𝑛 ≤ ∑𝑗𝑗=0
log2 𝑛𝑛−1 3

2

𝑗𝑗
𝑐𝑐𝑐𝑐

 In general, it's

𝑇𝑇 𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
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 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1



𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1
 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛𝑟𝑟log2 𝑛𝑛

 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛 � 𝑛𝑛(log2 𝑞𝑞)−1 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛log2 𝑞𝑞 which is 
𝑂𝑂 𝑛𝑛log2 𝑞𝑞



 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
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 Summing all the way to infinity, 1 + 1
2

+ 1
4

+ ⋯ = 2
 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑐𝑐 which is 𝑂𝑂(𝑛𝑛)



 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for( int i = 1; i <= n; i *= 2 )

for( int j = 1; j <= i; j++ )
counter++;







 Counting inversions



 Assignment 3 is due on Friday
 Read section 5.3
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139
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